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AbstracL The effective-medium permeabilily tensor is derived for an anliferromagnet- 
non-magnet superlattice with uniaxis parallel to the interfaces and an applied magnetic 
held along ~ lhe uniaris. I t  i s  used in a calculation of surfaEe-magnetostatic-mode 
dispersion cum=, and it i s  show first that the magnetmtatic modes are non-reciprocal, 
U ( - q )  # w(q) ,  and second that there is no magnetostatic mode for fM < 0.5 where f~ 
is the volume fraction of lhe antiferromagnet. Expressions for the dispersion curves of 
surface polariton modes for a general direction of propagation are derived and illustrated 
far the Voigt geometry, propagation transverse to the magnetic held. Far fM > 0.5 two 
real and one v i m a l  mode are found, where a ‘rcal’ mode is one with a magnetostatic 
limit. For fM < 0.5 both real mods .become virtual. Attenuated total reflection (A”) 

curves are calculated; i t  i s  Seen that they are a sensitive probe of the surface palariton 
spectrum. 

1. Introduction 

The electrodynamics of superlattices has been studied at least since the work of 
Rytov (1955). That paper and much of the subsequent work used a bulk-slab model, 
in which each layer is treated as being composed of the corresponding bulk material. 
This model may be conveniently treated within a transfer-matrix formalism (Raj and 
Tilley 1989), in which the  transfer matrix T translates field amplitudes across one 
period of the superlattice. The transfer matrix is developed using the electromagnetic 
boundary conditions. For an infinite superlattice, application of Bloch’s theorem leads 
to a dispersion equation for electrodynamic propagation of the form 

a ~ [ Q ( d i  + 4)] = i ’WT) (1) 
where Q is the Bloch vector and d,  + d, the superlattice period. This equation is 
exact within the bulk-slab model, and takes into account all multiple reflections at 
the interfaces. 

A significant simplification of (1) can be obtained in some cases. In the far 
infrared, the radiation wavelength is much greater than the period D, so that in 
(1) QD << 1 and in addition usually q,d, << 1, q,d, << 1, where di and qi 
are the thicknesses of the two layers and the wavenumberj of the equivalent bulk 
medium respectively. The trigonometric (or hyperbolic) functions occurring in (1) 
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can therefore be expanded t o  order Q2 (Raj and Tilley 1985); the expanded form is 
identical to the equation for optical propagation in a single uniaxial effective medium 
with dielectric-tensor components given by 
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E,, = fl.1 + f2.2 (2) 

(3) €;; = f'.;' + f2e;l 

where the y axis is normal to  the interfaces and f i  = d , / ( d ,  + d 2 )  is the volume 
fraction of material i. This result can also be derived by a simple field-continuity 
argument (Agranovich and Kravstov 1985). Far-infrared studies of long-period 
superlattices, for example, M a s h  el a1 (1986), Perkowitz er a1 (1987), have usually 
described the superlattice part of the sample within the effective-medium description 
given by (2) and (3). An alternative is to  use a standard multilayer optics formalism 
to calculate reflectivity, for example, with each layer of the superlattice treated 
separately. Where both methods have been applied to the same data (Jahne er 
al 1991) the parameter values found for the component layers are in agreement. 

Since the effective-medium limit of the bulk-slab model proved so useful for 
semiconductor superlattices it was natural that it should be developed for the magnetic 
case. This has been done both by expansion (Raj and Tilley 1987) and field-continuity 
(Almeida and Mills 1988) methods. The general expressions for the effective- 
medium permeability tensor are quite complicated, largely because the (gyromagnetic) 
permeability temor of each component layer contains off-diagonal elements. 

While semiconductor superlattices have been studied thoroughly both theoretically 
and experimentally for excitations in the infrared, the study of magnetic superlattices 
is not as well developed, particularly on the experimental side. However, ATR 
(attenuated total reflection) results for magnetic samples may soon be available. Thus 
in this paper we give a complete description of the bulk and surface electromagnetic 
modes in a stack of alternating antiferromagnetic and nonmagnetic films subjected 
to a DC magnetic field applied parallel to the easy axis. We use the effective-medium 
approach to describe the layered system as a homogeneous and anisotropic medium. 
In order to compare to future experimental work, we also calculate the ATR spectrum 
for a number of different configurations. In this, we pay particular attention to  
the application of a magnetic field in the plane of the films as this introduces non- 
reciprocity in the propagation of the surface modes. 

To put this work into perspective, we briefly review some earlier studies. The 
bulk-slab model (but not using the effective medium) has been used to  discuss a 
number of magnetic superlattices. For example, the well-known result that a surface 
magnetostatic mode occurs on a ferromagnetic-non-magnetic (M-NM) superlattice 
only if fM > fNM was derived in the bulk-slab model (Camley er a1 1983, Griinberg 
and Mika 1983) and later confirmed experimentally (Grimsditch el a1 1983, Kueny e; 
al 1984). Here fM and fNM are the volume fractions of M and NM, so that fM + fNM 
= 1. Most of this earlier work dealt with ferromagnetic systems with low frequency 
(5-30 GHz) excitations and with wavevectors of the order of lo' cm-'. 

In contrast to the studies on ferromagnetic materials, many antiferromagnetic and 
rare-earth resonance frequencies and ferrimagnetic exchange-resonance frequencies 
lie in the infrared frequency range of 100 GHz to 10 THz. I n  this range coupling to 
electromagnetic radiation is possible with wavenumbers on the order of 3 to  500 cm-'. 
Thus the programme of far-infrared studies of semiconductor superlattices which is 
being pursued in several laboratories (Jahne el a1 1991, Perkowitz el al 1987, Samson 
et a1 1992, for example) can, in principle, be extended to these magnetic systems. 
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We earlier carried out (Almeida and Tilley 1990) a study of antiferromagnet- 
antiferromagnet (AF-AF) and antiferromagnet-non-magnetic (AFNM) superlattices 
within the effective-medium description. In this work, no applied static field was 
included; this led to the considerable simplication that the RF permeability tensor 
of the antiferromagnet is diagonal, and the effective-medium expression are much 
simpler than in the general case. Subsequently, FeF,/CoF, superlattices were grown 
(Ramos er al 1990). Since the magnetic ordering direction in these may be normal 
to the interfaces, the earlier work was extended to this case (Camley er al 1992). 
These studies showed that for the detection of surface polaritons by attenuated total 
reflection (Am) a frequency resolution of the order of 0.01 cm-I is required and an 
angle of incidence of 45’ in a Si prism (as distinct from the 20° used for semiconductor 
studies) is suitable. Thus high-resolution spectroscopy is required; the experiments 
are technically demanding but not impossible. 

As mentioned, in this work we include the effects of a static magnetic field 
applied parallel to the surface. One of the  consequences is that the surface magnetic 
modes, either magnetostatic or retarded (polariton) can be non-reciprocal, i.e. 
w(q)  # w(-q) ,  where q is the propagation wavevector parallel to the surface. This 
arises from the absence of time-reversal invariance, manifested by the off-diagonal 
permeability elements, together with the reduction of spatial symmetry at the surface 
(Camley 1987). For retarded modes in magnetic systems, non-reciprocity has been 
observed only somewhat indirectly in reflection experiments (Remer er a/ 1986) and 
not directly, such as by observation of surface polaritons in ATR. Since experimental 
work may soon be available, it is timely to extend the results of Almeida and Tilley 
(1990) to include applied fields, and that is the aim of this paper. The non-reciprocity 
of the surface modes appear clearly in the ATR spcctrum. While the  effect of the 
field is significant, we take external fields small enough so that no spin flop transition 
takes place. 

The remainder of the paper is as follows. The basic effective-medium expressions 
are given in section 2. The dispersion relation for the surface magnetostatic modes 
is derived and illustrated in section 3. These modes are equivalent to the Damon- 
Eshbach (1961) modes for the ferromagnet The bulk and surface polariton dispersion 
relations are investigated in section 4. In section 5 we show how these retarded modes 
can be probed in an ATR experiment In sections 3 to 5 illustrative numerical results 
are given for the MnF,/ZnF2 superlattice. Conclusions of this work and discussion of 
possible developments are presented in section 6. 

Before concluding this section, we comment on when the bulk-slab model is not 
appropriate. First, many superlattices, particularly those composed of semiconductors, 
contain individual layers only a few monolayers thick. The bulk-slab model is 
inapplicable to these, since a very thin layer cannot simply have the magnetic an4 
dielectric response of a bulk medium. A much more sophisticated analysis is then 
required; in undoped semiconductors, for example, the contributions of confined optic 
phonons to the dielectric response of the whole superlattice are included (Samson 
er a/ 1992). Second, there are a number of cases in which the character of the 
interface exchange constants or some geometric feature leads to a magnetic ordering 
which is unique to the superlattice. ?ivo examples are the ‘twisted’ phase of Fe/Gd 
(Camley and Tilley 1988) which results from an antiferromagnetic interface interaction 
between the two ferromagnets, and the period-doubled magnetic structure that can 
be observed in Gd/Dy (Camley er a1 1990). Here again, the magnetic structure of 
the superlattice differs significantly from that of the bulk materials. In such cases, 
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the permeability for the superlattice can be positiondependent. This is as yet an 
unsolved problem. 

M C Oliveros et al 

2. Eaective-medium theory 

We consider a semi-infinite stack of alternating antiferromagnetic and non-magnetic 
layers with the orientation displayed in figure 1. The coordinate z axis is chosen 
parallel to the easy axis of the magnetic films and the specimen fills the half space 
y < 0 with its surface. parallel to  the I-y plane. It  is also considered that the sample 
is in the presence of a DC magnetic field, applied parallel to the easy axis (If = Huz), 
which is small compared with the spin flop phase transition field. It is assumed that 
each individual film is described by the bulk parameters so the non-magnetic layers 
are described by the dielectric and magnetic permeability tensors ez = c21 and pz = I 
respectively, with I denoting the identity tensor. The antiferromagnetic layers have 
their corresponding quantities given by 

0 0  
(4) 

and 

For a uniaxial Heisenberg antiferromagnet it is known that p,, = 1 and the other 
elemens of the tensor are given by Mills and Burstein (1974) 

where y is the gyromagnetic ratio and R, is the resonance frequency, R: = 
r 2 ( 2 H , H ,  + H:) with Ha and H ,  denoting the anisotropy and exchange fields. 

Figure 1. Illustration of superlatlice composed 
of alternaling antiferromagnetic and non-magnetic 
materials. H = Hoz is the external DC magnetic 
field, dl and d2 are the thicknesses of the layers. 
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Using the usual method (Raj and Tilley 1987, Almeida and Mills 1988) we find 
the effective anisotropic tensors which describe the layered system given by 

Here f, = di/(dl + d , )  (i = 1 or 2) with d ,  and d ,  denoting the thickness of the 
magnetic and nonmagnetic layers respectively. 

The calculations in this paper are carried out for an MnF,/ZnF, superlattice. The 
parameters for MnF, are cI = 4, e3 = 5.5, Ha = 7.85 kG, H e  = 550 kG, M, = 
0.6 kG. For ZnF, we take c, = 8. These values give an antiferromagnetic resonance 
frequency of about 260 GHz. 

3. Magnetostatic modes 

The knowledge of pen allows a complete study of the mixed .modes in the 
superlattice, treated as homogeneous anisotropic material. The dispersion relations 
for magnetostatic bulk and surface modes are obtained from Maxwell equations 

(13) 

(14) 

V x h = O  

v . (Pen. / I )  = 0 

with h denoting the magnetic field of the excitation. As usual, we use (13) to define 
this field as the gradient of a scalar magnetic potential &,(h = -V&) and the 
substitution of this definition in (14) gives the following implicit dispersion relation 
for the bulk magnetostatic modes 

(1-9 cosz et + Py COS, ey + Po cos2 e, = o 
where e,, 6 and 8, denote the angles between the wavevector of the mode and the 
I, y and z axs respectively. 

For surface modes we have vacuum in the region y > 0 and so we assume 
solutions for &,, in the form 

y .  

+Iexp(i(qll - Q t )  + ~ I Y )  if Y < 0 
if Y 2 0 d m = (  +Zexp(i(nll .q - f i t )  - a U y )  

(16) 

where rll: qll and R are the position, wavevector and the frequency of the mode 
propagating at the surface y = 0. Also ai and a2 (both greater than zero) are the 
decay constants which assure the behaviour expected for a surface mode. 
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Straightfonvard algebra gives the following implicit dispersion relation for these 
modes 

(17) 

(18) 

(1 + p,,sin 

f1 ( P ~ / P ] )  sin 'P + 1/pY < 0. 

- pY(pr sinz 'P + p0cos 2 ip) = o 
with the subsidiary condition 

In (17) and (18), 'p is the angle between the direction of propagation and the z 
axis, as shown in figure 1. The dispersion relation for the Damon-Eshbach modes is 
obtained by the solution of (17) provided the subsidiary condition (18) is satisfied. 

Figure 2. Dispersion relalion for magneloslalic modes (solid curves) assuming Ho = 
200 G and (0) fi  = 1 (pure AP), (6) fi = 0.75, (c) f l  = 0.5 and ( d )  fi = 0.25. Bulk 
conlinua shown shaded. 

We shown in figures 2(a)-2(d) the dispersion relation fila, versus 'p for bulk 
and surface models in an MnF2/ZnF2 superlattice obtained from (15) and (17) for 
different relative thicknesses of the antiferromagnetic component and Hu = 2M) G. 
In these graphs the shaded areas show the frequency region where there are bulk 
modes with wavevectors which have their components parallel to the surface in the 
direction indicated on the horizontal axis and perpendicular component between zero 
and infinity. The dispersion relations for surface modes are represented by the full 
lines. The result for fl = 1 (pure AF) was obtained by Camley (1980); like the other 
graphs it shown non-reciprocal propagation, with the lower branch occurring for (0 < 
0 and the upper branch for 'p > 0. Comparing the different graphs in figure 2, one 
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sees that as fl decreases the surface-mode dispersion curves change very little, but 
the bulk continuum expands towards the surface-mode curves in such a way that the 
surface modes are completely absorbed within the bulk continua for fl < 0.5. It was 
predicted (Camley el a1 1983, Griinberg and Mika 1983) and confirmed (Grimsditch 
er al 1983, Kueny et al 1984) some time ago that the DE mode would appear on 
a ferromagnet-non-magnet superlattice only for f, 2 0.5. The same was found to 
hold for AF-NM superlattice in the absence of an applied field (Almeida and Tilley 
1990). and the present result is a further generalization. Results like those in figure 2 
suggest that it should be possible to control the region of propagation of these modes 
by choosing specific values for t h e  ratio between the thicknesses of the layers. 

4. Retarded modes in antiferromagnetic superlnttices 

Retarded modes are studied in taking Maxwell's equations in complete form, i.e. 
including retarded terms in the right hand side of (13). After some algebra it is 
found that the magnetic field of the mode with frequency R must obey the following 
homogeneous wave equation 

V x ( e ; ,  . V x h)  - ( w 2 / c Z ) p , n .  h = 0. (19) 
For bulk modes we assume the spatial dependence exp(iq. r )  and the dispersion 

relation is obtained by setting the determinant of the coefficient matrix equal to zero. 
Since for each value of 2D wavevector 911 ,parallel to the surface we can have any 
value from zero to infinity for the  perpendlcular component q, we find in the R-qll 
plane not a single curve but a frequency region where these modes exist. 

Surface polaritons are localized at the surface and have their magnetic field given 
by 

h = h,exp(iqII. T - aUy) (Y > 0) (20) 

h = hl exp(iqll . r + sly) f Y < 0) (21) 
where al and a,, are decay factors that are real and greater than zero. Using the 
effective dielectric (eeri) and magnetic permeability (pet) tensors defined earlier, we 
find that the magnetic field h obeys the following matrix equation 

Ah = 0 (22) 
where 

1 a2 R* 
* J  ekk axiaxj cz 

A . .  = -- - -gij, 

In the equations above, i, j ,  12 assume values 1, 2, 3 in cyclic order. The condition 
for a non-trivial solution of (22) and the boundary conditions for the electromagnetic 
fields a t  the surface of the specimen given for the surface mode propagating in a 'p 

direction ('p is the angle between q,l and the z axis) the following two equations for 
a1 

(fiysinv)a:+ [au(w, +PEPLy - w t ) s i n v - p p q ] ~ ,  
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Since oil is a function of w and qI1, the values of this decay factor for which both 
equations above are satisfied and also are greater than zero give us the dispersion 
relation required. The direction of propagation parallel to the z axis (Voigt geometry) 
has a particularly simple dispersion relation since 'p = n/2  and (25) and (26) become 

resulting in the following relation 

(29) 
The non-reciprocity is apparent here in the appearance of a term linear in qI1. The 
values of R and qI1 that satisfy (29) and also give for al (from (28)) a value greater 
than zero are the required solution. 

Examples of dispersion curves calculated for the MnF2/ZnF2 superlattice are 
shown in figure 3. Attention is restricted to the Voigt geometry, 'p = n/2.  It 
is seen that even with a fairly modest applied field the non-reciprocity IS striking. 
Figure 3(a )  is the result for pure MnF, (fA = 1) and is the same as has been shown 
previously (Camley 1987). The upper bulk continuum predicted for Ho = 0 splits 
into two, with a new surface mode appearing on the -IC side in the gap between the 
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Figure 3. Dispenion relalion for retarded modes (surface polarilons) in Voigl geometry 
assuming Ho = 200 G and (a) f t  = 1 (pure AF), (b)  f t  = 0.75, (c) f, = 0.5 and (d) 
fi = 0.25. Bulk conlinua shown shaded. 

two. This mode starts at the low-frequency end on the  vacuum light line (essentially 
the vertical line c k / O r  = -1 on the scale used) and terminates at a finite value of 
k in the uppermost bulk continuum. Thus it has no magnetostatic limit and may be 
called a virtual mode in the usual terminology. The two lower surface modes, which 
are already present for H ,  = 0, now exhibit marked non-reciprocity. Both have 
magnetostatic limits, i.e. they are real modes for fA = 1 and the limiting frequencies 
agree with the corresponding points on figure 2 (9 = k90°). 

Figures 3(b) to 3(d )  show the corresponding curves for progressively decreasing 
values of fA. Broadly speaking, the bulk continuum regions expand while the surface- 
mode curves alter only slightly. The lower surface modes change over from real to 
virtual at fA = 0.5. Like the corresponding result in the absence of an applied field 
(Almeida and Tilley 1991) this is a generalization of the result of section 3 that there 
is no magnetostatic mode for f A  < 0.5. 

5. Attenuated total reflection 

We have shown in figure 3 examples of the dispersion relation for surface polaritons. 
As commented in section 1, A m  spectroscopy should prove effective in investigating 
these modes, as it has been for the corresponding modes in layered semiconductor 
structure (El Gohary er a/ 1989, Haraguchi er a1 1990, Dumelow er ul 1991, for 
example). In the ATR method, shown schematically in figure 4, light is incident at an 
angle Bi in a prism of dielectric constant e,; Bi is chosen greater than 8, = sin-' e;'/*,  
the critical angle for total internal reflection at t h e  prism-vacuum interface. Simple 



8506 

kinematic analysis (Cottam and Tilley 1989) shows that the in-plane wavevector 
component is 

M C Oliveros er a1 

ql, = e,J2(w/c)sinei (30) 

and that this applies to the electromagnetic excitations in all the layers. vpically 
in far-infrared experiments Bi is fixed and the frequency w is scanned. Equation 
(30) then shows that the experimental scan is along a straight line in the (qllw) 
plane. On the scale of figure 3, such scan lines are essentially vertical, and examples 
for Bi = f25O and +3S0 are shown in figure 3(c). The expected spectra may be 
divided into three types of region. Where the scan line falls within a bulk continuum, 
coupling across the gap to the bulk modes occurs and the reflectivity R is below 
unity but generally without sharp features. Outside the bulk continua but away from 
the immediate vicinity of surface-mode dispersion curves the reststrahl-like property 
R = 1 is expected; in practice, damping within the sample reduces R slightly below 
1. At a crossing with a surface-mode dispersion curve R dips sharply below 1 due 
to the coupling which the  technique is designed to achieve. The width of the dip 
is governed by damping. The damping parameter r used here is 150 G. The depth 
depends on the value of the coupling gap d; for optimal d theoretical curves, but 
not usually experimental cuwes, may dip to R = 0. The optimal value of d depends 
on the exponential decay lengths of the evanescent field helow the prism and the 
polariton field above the sample surface. The former increases with the free-space 
wavelength of the radiation and decreases as 0 increases away from e,, the critical 
angle for total internal reflection; the optimal value of d therefore also shows these 
trends. 

\ / 

I sample I 

I I 

0 

0 

the ATR speclrum. 
Figure 4. Illustration of lhe geomelry used 10 obtain 

These general features are seen in many experimental ATR spectra, for example, 
those measured in the far infrared on semiconductor superlattices (Dumelow er al 
1993). 
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An explicit formula for the ATR reflectivity in the case when the sample is 
described by the effective-medium permeability of (9) has been given previously 
(Almeida and Tilley 1991). ATR spectra calculated from it for the sample of figure 3(c) 
( fA = 0.5) are shown in figure 5. Because of the very fine frequency scale required to 
show the features of interest. curves for the lower and upper surface-mode windows 
are shown separately. 

Figure 5. hTR spectrum as a funclion of frequency calculated using the geometry 
illustrated in figure 4. Here f l  = fl = 0.5, d = 0.017 cm, cpdlm = 11.6 H = 0.2 kG. 
(a )  0; = f2S0 (dash-dot lines in figure 3(c)). lower window; (b )  8, = f35' (dashed 
lines in figure 3(c)). lower window; (c) Ri = f25O. upper window; (d)  0; = f35', upper 
window. Inlersections of scan lines with surface-polariton dispenion curves in figure 3(c) 
are marked with arrows. 

Figure 5(a)  shows the ATR curves for B = k25O in the lower window; the non- 
reciprocity is quite evident, as it is in all subsequent curves, and should he resolvable 
by a suitable instrument. Both curves start at the low-frequency end with R < 1 
since the scan line in figure 3(c) is then in a hulk continuum. As the frequem; 
increases the scan line enters a reststrahl region with I2 x 1; within this region the 
surface-mode dip is seen. In fact for Oi = - 2 5 O  the surface mode is sufficiently 
near to the top of the bulk continuum that the onset of the reststrahl region is not 
seen. At higher frequencies the scan line again enters a bulk continuum with R < 
1. The curves are drawn for a numerically selected 'optimal d', the criterion being 
to choose the largest d value for which R sz 0 is attained at the bottom of the dip. 
In fact the d value for Bi = -25" is different from that for Bi  = +25O, presumably 
because the surface-polariton decay length is different in the two cases. In practice, 
the magnetic field direction would be reversed to go from one Scan to the other, 
presumably without change of gap setting, but since a sharp ATR dip is found for a 
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wide range of d-values it is unlikely that there would be any need to reset d. The 
surface-mode dip is expected to occur a t  the frequency at which the scan line in 
figure 3(c) crosses the dispersion curve. On figure S(a) and the later figures these 
crossing points are denoted by arrows on the frequency axis; they are seen to coincide 
quite closely with the dip frequencies. 

The corresponding lower-window curves for Bi = *3S0 are shown in figure 5(b); 
the same general comments apply as for figure 5(u). The gap values are smaller than 
in figure 5(a)  since the evanescent-mode decay length is shorter for the larger angle. 

Figure 3(c) shows that the upper -IC surface-mode branch intersects the -25O 
scan but not the -35' scan. The calculated ATR curves for both positive and negative 
angles of incidence in the upper surface-mode window are shown in figures S(c)  and 
5(d). Figure 5(c) for Bi = +2S0 shows the expected and striking non-reciprocity i.e. 
the surface-mode dip is seen for -25" but not for +25O. The dip does not drop to 
R = 0 the curve was calculated for the same value of d as was used for figure S(a) 
(as would be the case in an experimental run) and d is not therefore optimized 
for this branch. Nevertheless, the feature is quite prominent. Otherwise the +25' 
curve, and the -25' curve outside the surface dip, show the sequence bulk continuum 
(R < 1)-reststrahl (R % 1)-bulk continuum ( R  < 1) that is to be expected from 
the scan line in figure 3(c). In contrast to figure S(c), figure S(d) shows no surface- 
mode dip for the -35' scan, and both 535' curves follow the  simple sequence bulk 
continuum-reststrahl-bulk continuum seen in figure 3(c). 

The ATR reflectivity as a function of frequency gives very complete information on 
the surface polariton modes. A typical method of making such a measurement is to 
use a broad-band source of electromagnetic radiation and pick out the response at the 
individual frequencies using interferometry. However, due to the narrow frequency 
range of the surface polaritons, such a measurement is challenging because it requires 
excellent frequency resolution. We therefore explore two other possible measurement 
methods. In both cases we imagine illuminating the sample with a single well-defined 
frequency as is found in a laser. This eliminates the problem of obtaining good 
frequency resolution. 

In the first case we assume the frequency of the external radiation matches that 
of a surface polariton and arrange to have the para114 wavevector match as well by 
changing the angle of incidence. The theoretical results for such a measurement are 
presented in figure 6 where we plot ATR reflectivity as a function of incident angle. 
This corresponds to scanning across figure 3 at a frequency Q/n, = 1.002. In figure 3 
we see that at this frequency a surface modes exists only for positive IC. This non- 
reciprocity of the surface polariton modes is clearly demonstrated in the existence of 
a deep dip for positive 0 and the lack of a corresponding dip for negative 8. 

The second method is probably more convenient experimentally. Here the 
incident angle is Iixed and the external ficld is varied. The external field can be 
used to shift the surface and bulk polaritons up  or down in frequency so as to match 
the frequency of the polaritons to that of the incident radiation. The theoretical 
results for such an experiment are given in figure 7. Here the non-reciprocity is 
evident in that positive and negative H give very different results. From figure 7 we 
see that the shift in the position of the dip between positive H and negative H is 
about 200 gauss. Such a difference should be easily measurable. 

M C Oliveros et a1 
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F ~ U R  6. AIR rcflativity as a function of incident 
angle. The parameters for this calculation are the 
Same as in figure 5 excepl that lhe gap is 0.019 em, 
O/n, = 1.002 and r = 20 gauss. 

Figure 7. I h e  ATR reflenivity as a funclion of 
applied field. Continuous curve +H, dashed curve 
- H .  The paramelem for [his calculslion are those 
in figure 6 except lhal 010, = 0.999 and Bi = 
25'. 

6. Conclusions 

The present paper has continued the theoretical study of antiferromagnet-based 
superlattices by including the effects of an applied static field. This is important 
not only because it is likely that experimental work will include magnetic field effects, 
but also because the inclusion of the field means that the RF permeability temor of the 
antiferromagnet takes the gyromagnetic form of (5) rather than the simpler diagonal 
form found without applied field. In consequence, and as seen in figures 2 and 3, 
non-reciprocal propagation is found, as is very characteristic of magnetic systems. It 
is striking that the pronounced anisotropy evident in figures 2 and 3 is induced by 
the modest field value of 200 G, although as seen from (6) and (7) this is essentially 
scaled by the antiferromagnetic resonance frequency, which is rather low in MnF,. 
As in reflectivity (Remer el al 1986), the  experimental indication of non-reciprocity 
is that the main ATR dip would be seen at different frequency in a reversed magnetic 
field. 

We have concentrated on surface modes and the related ATR spectra. It is worth 
commenting, however, that oblique-incidence reflectivity is also a technique with 
a considerable potential. For semiconductor superlattices, it has been found that 
oblique-incidence reflectivity spectra yield detailed information on the bulk polariton 
modes which is very valuable in characterization (Lou el a1 1988, Dumelow and Tilley 
1992). In fact, as pointed out already, the only direct evidence for non-reciprocal 
propagation on the surface of an antiferromagnetic was obtained by oblique-incidence 
reflectivity (Remer et a1 1986). 

Here, as in Almeida and Tilley (1990), it has been assumed that the AF uniaxis 
as well as the applied field lie parallel to the superlattice planes. While such an 
arrangement is quite possible, it seems likely that in AF-AF superlattices so far 
reported (Ramos er a1 1990), the  uniaxis lies in the growth direction. The surface 
polariton spectra and ATR spectra in the absence of a magnetic field for this geometry 
have been reported elsewhere (Camley et a1 1992); clearly a useful generalization 
would be to include an applied field for this geometry. 

As mentioned in section 1, a strong enough applied field induces a spin-flop 
transition, but we have considered only fields sufficiently weak that this does not 
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occur. In fact the phase diagram (in 7' -H-f ,  space) even for AF/NM superlattice has 
not been studied in detail; both this and the magnetostatic and polariton modes of 
the various phases that may occur represent a substantial field of study. 
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